X7ROOT File Manager
Current Path:
/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/lib
opt
/
cloudlinux
/
venv
/
lib
/
python3.11
/
site-packages
/
numpy
/
lib
/
??
..
??
__init__.py
(2.7 KB)
??
__init__.pyi
(5.46 KB)
??
__pycache__
??
_datasource.py
(22.1 KB)
??
_iotools.py
(30.14 KB)
??
_version.py
(4.74 KB)
??
_version.pyi
(633 B)
??
arraypad.py
(31.06 KB)
??
arraypad.pyi
(1.69 KB)
??
arraysetops.py
(32.87 KB)
??
arraysetops.pyi
(8.14 KB)
??
arrayterator.py
(6.9 KB)
??
arrayterator.pyi
(1.5 KB)
??
format.py
(33.95 KB)
??
format.pyi
(748 B)
??
function_base.py
(184.67 KB)
??
function_base.pyi
(16.2 KB)
??
histograms.py
(36.81 KB)
??
histograms.pyi
(995 B)
??
index_tricks.py
(30.61 KB)
??
index_tricks.pyi
(4.15 KB)
??
mixins.py
(6.91 KB)
??
mixins.pyi
(3.04 KB)
??
nanfunctions.py
(64.23 KB)
??
nanfunctions.pyi
(606 B)
??
npyio.py
(95.04 KB)
??
npyio.pyi
(9.5 KB)
??
polynomial.py
(43.1 KB)
??
polynomial.pyi
(6.79 KB)
??
recfunctions.py
(58.03 KB)
??
scimath.py
(14.68 KB)
??
scimath.pyi
(2.82 KB)
??
setup.py
(405 B)
??
shape_base.py
(38.03 KB)
??
shape_base.pyi
(5.06 KB)
??
stride_tricks.py
(17.49 KB)
??
stride_tricks.pyi
(1.71 KB)
??
tests
??
twodim_base.py
(32.17 KB)
??
twodim_base.pyi
(5.24 KB)
??
type_check.py
(19.49 KB)
??
type_check.pyi
(5.44 KB)
??
ufunclike.py
(6.18 KB)
??
ufunclike.pyi
(1.26 KB)
??
user_array.py
(7.54 KB)
??
utils.py
(36.92 KB)
??
utils.pyi
(2.3 KB)
Editing: arraysetops.pyi
from typing import ( Literal as L, Any, TypeVar, overload, SupportsIndex, ) from numpy import ( generic, number, bool_, ushort, ubyte, uintc, uint, ulonglong, short, int8, byte, intc, int_, intp, longlong, half, single, double, longdouble, csingle, cdouble, clongdouble, timedelta64, datetime64, object_, str_, bytes_, void, ) from numpy._typing import ( ArrayLike, NDArray, _ArrayLike, _ArrayLikeBool_co, _ArrayLikeDT64_co, _ArrayLikeTD64_co, _ArrayLikeObject_co, _ArrayLikeNumber_co, ) _SCT = TypeVar("_SCT", bound=generic) _NumberType = TypeVar("_NumberType", bound=number[Any]) # Explicitly set all allowed values to prevent accidental castings to # abstract dtypes (their common super-type). # # Only relevant if two or more arguments are parametrized, (e.g. `setdiff1d`) # which could result in, for example, `int64` and `float64`producing a # `number[_64Bit]` array _SCTNoCast = TypeVar( "_SCTNoCast", bool_, ushort, ubyte, uintc, uint, ulonglong, short, byte, intc, int_, longlong, half, single, double, longdouble, csingle, cdouble, clongdouble, timedelta64, datetime64, object_, str_, bytes_, void, ) __all__: list[str] @overload def ediff1d( ary: _ArrayLikeBool_co, to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ..., ) -> NDArray[int8]: ... @overload def ediff1d( ary: _ArrayLike[_NumberType], to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ..., ) -> NDArray[_NumberType]: ... @overload def ediff1d( ary: _ArrayLikeNumber_co, to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ..., ) -> NDArray[Any]: ... @overload def ediff1d( ary: _ArrayLikeDT64_co | _ArrayLikeTD64_co, to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ..., ) -> NDArray[timedelta64]: ... @overload def ediff1d( ary: _ArrayLikeObject_co, to_end: None | ArrayLike = ..., to_begin: None | ArrayLike = ..., ) -> NDArray[object_]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[False] = ..., return_inverse: L[False] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> NDArray[_SCT]: ... @overload def unique( ar: ArrayLike, return_index: L[False] = ..., return_inverse: L[False] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> NDArray[Any]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[True] = ..., return_inverse: L[False] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[True] = ..., return_inverse: L[False] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp]]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[False] = ..., return_inverse: L[True] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[False] = ..., return_inverse: L[True] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp]]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[False] = ..., return_inverse: L[False] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[False] = ..., return_inverse: L[False] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp]]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[True] = ..., return_inverse: L[True] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[True] = ..., return_inverse: L[True] = ..., return_counts: L[False] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[True] = ..., return_inverse: L[False] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[True] = ..., return_inverse: L[False] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[False] = ..., return_inverse: L[True] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[False] = ..., return_inverse: L[True] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: _ArrayLike[_SCT], return_index: L[True] = ..., return_inverse: L[True] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[_SCT], NDArray[intp], NDArray[intp], NDArray[intp]]: ... @overload def unique( ar: ArrayLike, return_index: L[True] = ..., return_inverse: L[True] = ..., return_counts: L[True] = ..., axis: None | SupportsIndex = ..., *, equal_nan: bool = ..., ) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp], NDArray[intp]]: ... @overload def intersect1d( ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast], assume_unique: bool = ..., return_indices: L[False] = ..., ) -> NDArray[_SCTNoCast]: ... @overload def intersect1d( ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ..., return_indices: L[False] = ..., ) -> NDArray[Any]: ... @overload def intersect1d( ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast], assume_unique: bool = ..., return_indices: L[True] = ..., ) -> tuple[NDArray[_SCTNoCast], NDArray[intp], NDArray[intp]]: ... @overload def intersect1d( ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ..., return_indices: L[True] = ..., ) -> tuple[NDArray[Any], NDArray[intp], NDArray[intp]]: ... @overload def setxor1d( ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast], assume_unique: bool = ..., ) -> NDArray[_SCTNoCast]: ... @overload def setxor1d( ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ..., ) -> NDArray[Any]: ... def in1d( ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ..., invert: bool = ..., ) -> NDArray[bool_]: ... def isin( element: ArrayLike, test_elements: ArrayLike, assume_unique: bool = ..., invert: bool = ..., ) -> NDArray[bool_]: ... @overload def union1d( ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast], ) -> NDArray[_SCTNoCast]: ... @overload def union1d( ar1: ArrayLike, ar2: ArrayLike, ) -> NDArray[Any]: ... @overload def setdiff1d( ar1: _ArrayLike[_SCTNoCast], ar2: _ArrayLike[_SCTNoCast], assume_unique: bool = ..., ) -> NDArray[_SCTNoCast]: ... @overload def setdiff1d( ar1: ArrayLike, ar2: ArrayLike, assume_unique: bool = ..., ) -> NDArray[Any]: ...
Upload File
Create Folder