X7ROOT File Manager
Current Path:
/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy
opt
/
cloudlinux
/
venv
/
lib
/
python3.11
/
site-packages
/
numpy
/
??
..
??
LICENSE.txt
(44.62 KB)
??
__config__.py
(5.02 KB)
??
__init__.cython-30.pxd
(35.81 KB)
??
__init__.pxd
(34.22 KB)
??
__init__.py
(16.1 KB)
??
__init__.pyi
(150.11 KB)
??
__pycache__
??
_distributor_init.py
(331 B)
??
_globals.py
(3.02 KB)
??
_pyinstaller
??
_pytesttester.py
(6.51 KB)
??
_pytesttester.pyi
(489 B)
??
_typing
??
_utils
??
_version.py
(498 B)
??
array_api
??
compat
??
conftest.py
(4.51 KB)
??
core
??
ctypeslib.py
(16.84 KB)
??
ctypeslib.pyi
(7.79 KB)
??
distutils
??
doc
??
dtypes.py
(2.18 KB)
??
dtypes.pyi
(1.28 KB)
??
exceptions.py
(7.17 KB)
??
exceptions.pyi
(600 B)
??
f2py
??
fft
??
lib
??
linalg
??
ma
??
matlib.py
(10.22 KB)
??
matrixlib
??
polynomial
??
py.typed
(0 B)
??
random
??
setup.py
(1.11 KB)
??
testing
??
tests
??
typing
??
version.py
(623 B)
Editing: ctypeslib.py
""" ============================ ``ctypes`` Utility Functions ============================ See Also -------- load_library : Load a C library. ndpointer : Array restype/argtype with verification. as_ctypes : Create a ctypes array from an ndarray. as_array : Create an ndarray from a ctypes array. References ---------- .. [1] "SciPy Cookbook: ctypes", https://scipy-cookbook.readthedocs.io/items/Ctypes.html Examples -------- Load the C library: >>> _lib = np.ctypeslib.load_library('libmystuff', '.') #doctest: +SKIP Our result type, an ndarray that must be of type double, be 1-dimensional and is C-contiguous in memory: >>> array_1d_double = np.ctypeslib.ndpointer( ... dtype=np.double, ... ndim=1, flags='CONTIGUOUS') #doctest: +SKIP Our C-function typically takes an array and updates its values in-place. For example:: void foo_func(double* x, int length) { int i; for (i = 0; i < length; i++) { x[i] = i*i; } } We wrap it using: >>> _lib.foo_func.restype = None #doctest: +SKIP >>> _lib.foo_func.argtypes = [array_1d_double, c_int] #doctest: +SKIP Then, we're ready to call ``foo_func``: >>> out = np.empty(15, dtype=np.double) >>> _lib.foo_func(out, len(out)) #doctest: +SKIP """ __all__ = ['load_library', 'ndpointer', 'c_intp', 'as_ctypes', 'as_array', 'as_ctypes_type'] import os from numpy import ( integer, ndarray, dtype as _dtype, asarray, frombuffer ) from numpy.core.multiarray import _flagdict, flagsobj try: import ctypes except ImportError: ctypes = None if ctypes is None: def _dummy(*args, **kwds): """ Dummy object that raises an ImportError if ctypes is not available. Raises ------ ImportError If ctypes is not available. """ raise ImportError("ctypes is not available.") load_library = _dummy as_ctypes = _dummy as_array = _dummy from numpy import intp as c_intp _ndptr_base = object else: import numpy.core._internal as nic c_intp = nic._getintp_ctype() del nic _ndptr_base = ctypes.c_void_p # Adapted from Albert Strasheim def load_library(libname, loader_path): """ It is possible to load a library using >>> lib = ctypes.cdll[<full_path_name>] # doctest: +SKIP But there are cross-platform considerations, such as library file extensions, plus the fact Windows will just load the first library it finds with that name. NumPy supplies the load_library function as a convenience. .. versionchanged:: 1.20.0 Allow libname and loader_path to take any :term:`python:path-like object`. Parameters ---------- libname : path-like Name of the library, which can have 'lib' as a prefix, but without an extension. loader_path : path-like Where the library can be found. Returns ------- ctypes.cdll[libpath] : library object A ctypes library object Raises ------ OSError If there is no library with the expected extension, or the library is defective and cannot be loaded. """ # Convert path-like objects into strings libname = os.fsdecode(libname) loader_path = os.fsdecode(loader_path) ext = os.path.splitext(libname)[1] if not ext: import sys import sysconfig # Try to load library with platform-specific name, otherwise # default to libname.[so|dll|dylib]. Sometimes, these files are # built erroneously on non-linux platforms. base_ext = ".so" if sys.platform.startswith("darwin"): base_ext = ".dylib" elif sys.platform.startswith("win"): base_ext = ".dll" libname_ext = [libname + base_ext] so_ext = sysconfig.get_config_var("EXT_SUFFIX") if not so_ext == base_ext: libname_ext.insert(0, libname + so_ext) else: libname_ext = [libname] loader_path = os.path.abspath(loader_path) if not os.path.isdir(loader_path): libdir = os.path.dirname(loader_path) else: libdir = loader_path for ln in libname_ext: libpath = os.path.join(libdir, ln) if os.path.exists(libpath): try: return ctypes.cdll[libpath] except OSError: ## defective lib file raise ## if no successful return in the libname_ext loop: raise OSError("no file with expected extension") def _num_fromflags(flaglist): num = 0 for val in flaglist: num += _flagdict[val] return num _flagnames = ['C_CONTIGUOUS', 'F_CONTIGUOUS', 'ALIGNED', 'WRITEABLE', 'OWNDATA', 'WRITEBACKIFCOPY'] def _flags_fromnum(num): res = [] for key in _flagnames: value = _flagdict[key] if (num & value): res.append(key) return res class _ndptr(_ndptr_base): @classmethod def from_param(cls, obj): if not isinstance(obj, ndarray): raise TypeError("argument must be an ndarray") if cls._dtype_ is not None \ and obj.dtype != cls._dtype_: raise TypeError("array must have data type %s" % cls._dtype_) if cls._ndim_ is not None \ and obj.ndim != cls._ndim_: raise TypeError("array must have %d dimension(s)" % cls._ndim_) if cls._shape_ is not None \ and obj.shape != cls._shape_: raise TypeError("array must have shape %s" % str(cls._shape_)) if cls._flags_ is not None \ and ((obj.flags.num & cls._flags_) != cls._flags_): raise TypeError("array must have flags %s" % _flags_fromnum(cls._flags_)) return obj.ctypes class _concrete_ndptr(_ndptr): """ Like _ndptr, but with `_shape_` and `_dtype_` specified. Notably, this means the pointer has enough information to reconstruct the array, which is not generally true. """ def _check_retval_(self): """ This method is called when this class is used as the .restype attribute for a shared-library function, to automatically wrap the pointer into an array. """ return self.contents @property def contents(self): """ Get an ndarray viewing the data pointed to by this pointer. This mirrors the `contents` attribute of a normal ctypes pointer """ full_dtype = _dtype((self._dtype_, self._shape_)) full_ctype = ctypes.c_char * full_dtype.itemsize buffer = ctypes.cast(self, ctypes.POINTER(full_ctype)).contents return frombuffer(buffer, dtype=full_dtype).squeeze(axis=0) # Factory for an array-checking class with from_param defined for # use with ctypes argtypes mechanism _pointer_type_cache = {} def ndpointer(dtype=None, ndim=None, shape=None, flags=None): """ Array-checking restype/argtypes. An ndpointer instance is used to describe an ndarray in restypes and argtypes specifications. This approach is more flexible than using, for example, ``POINTER(c_double)``, since several restrictions can be specified, which are verified upon calling the ctypes function. These include data type, number of dimensions, shape and flags. If a given array does not satisfy the specified restrictions, a ``TypeError`` is raised. Parameters ---------- dtype : data-type, optional Array data-type. ndim : int, optional Number of array dimensions. shape : tuple of ints, optional Array shape. flags : str or tuple of str Array flags; may be one or more of: - C_CONTIGUOUS / C / CONTIGUOUS - F_CONTIGUOUS / F / FORTRAN - OWNDATA / O - WRITEABLE / W - ALIGNED / A - WRITEBACKIFCOPY / X Returns ------- klass : ndpointer type object A type object, which is an ``_ndtpr`` instance containing dtype, ndim, shape and flags information. Raises ------ TypeError If a given array does not satisfy the specified restrictions. Examples -------- >>> clib.somefunc.argtypes = [np.ctypeslib.ndpointer(dtype=np.float64, ... ndim=1, ... flags='C_CONTIGUOUS')] ... #doctest: +SKIP >>> clib.somefunc(np.array([1, 2, 3], dtype=np.float64)) ... #doctest: +SKIP """ # normalize dtype to an Optional[dtype] if dtype is not None: dtype = _dtype(dtype) # normalize flags to an Optional[int] num = None if flags is not None: if isinstance(flags, str): flags = flags.split(',') elif isinstance(flags, (int, integer)): num = flags flags = _flags_fromnum(num) elif isinstance(flags, flagsobj): num = flags.num flags = _flags_fromnum(num) if num is None: try: flags = [x.strip().upper() for x in flags] except Exception as e: raise TypeError("invalid flags specification") from e num = _num_fromflags(flags) # normalize shape to an Optional[tuple] if shape is not None: try: shape = tuple(shape) except TypeError: # single integer -> 1-tuple shape = (shape,) cache_key = (dtype, ndim, shape, num) try: return _pointer_type_cache[cache_key] except KeyError: pass # produce a name for the new type if dtype is None: name = 'any' elif dtype.names is not None: name = str(id(dtype)) else: name = dtype.str if ndim is not None: name += "_%dd" % ndim if shape is not None: name += "_"+"x".join(str(x) for x in shape) if flags is not None: name += "_"+"_".join(flags) if dtype is not None and shape is not None: base = _concrete_ndptr else: base = _ndptr klass = type("ndpointer_%s"%name, (base,), {"_dtype_": dtype, "_shape_" : shape, "_ndim_" : ndim, "_flags_" : num}) _pointer_type_cache[cache_key] = klass return klass if ctypes is not None: def _ctype_ndarray(element_type, shape): """ Create an ndarray of the given element type and shape """ for dim in shape[::-1]: element_type = dim * element_type # prevent the type name include np.ctypeslib element_type.__module__ = None return element_type def _get_scalar_type_map(): """ Return a dictionary mapping native endian scalar dtype to ctypes types """ ct = ctypes simple_types = [ ct.c_byte, ct.c_short, ct.c_int, ct.c_long, ct.c_longlong, ct.c_ubyte, ct.c_ushort, ct.c_uint, ct.c_ulong, ct.c_ulonglong, ct.c_float, ct.c_double, ct.c_bool, ] return {_dtype(ctype): ctype for ctype in simple_types} _scalar_type_map = _get_scalar_type_map() def _ctype_from_dtype_scalar(dtype): # swapping twice ensure that `=` is promoted to <, >, or | dtype_with_endian = dtype.newbyteorder('S').newbyteorder('S') dtype_native = dtype.newbyteorder('=') try: ctype = _scalar_type_map[dtype_native] except KeyError as e: raise NotImplementedError( "Converting {!r} to a ctypes type".format(dtype) ) from None if dtype_with_endian.byteorder == '>': ctype = ctype.__ctype_be__ elif dtype_with_endian.byteorder == '<': ctype = ctype.__ctype_le__ return ctype def _ctype_from_dtype_subarray(dtype): element_dtype, shape = dtype.subdtype ctype = _ctype_from_dtype(element_dtype) return _ctype_ndarray(ctype, shape) def _ctype_from_dtype_structured(dtype): # extract offsets of each field field_data = [] for name in dtype.names: field_dtype, offset = dtype.fields[name][:2] field_data.append((offset, name, _ctype_from_dtype(field_dtype))) # ctypes doesn't care about field order field_data = sorted(field_data, key=lambda f: f[0]) if len(field_data) > 1 and all(offset == 0 for offset, name, ctype in field_data): # union, if multiple fields all at address 0 size = 0 _fields_ = [] for offset, name, ctype in field_data: _fields_.append((name, ctype)) size = max(size, ctypes.sizeof(ctype)) # pad to the right size if dtype.itemsize != size: _fields_.append(('', ctypes.c_char * dtype.itemsize)) # we inserted manual padding, so always `_pack_` return type('union', (ctypes.Union,), dict( _fields_=_fields_, _pack_=1, __module__=None, )) else: last_offset = 0 _fields_ = [] for offset, name, ctype in field_data: padding = offset - last_offset if padding < 0: raise NotImplementedError("Overlapping fields") if padding > 0: _fields_.append(('', ctypes.c_char * padding)) _fields_.append((name, ctype)) last_offset = offset + ctypes.sizeof(ctype) padding = dtype.itemsize - last_offset if padding > 0: _fields_.append(('', ctypes.c_char * padding)) # we inserted manual padding, so always `_pack_` return type('struct', (ctypes.Structure,), dict( _fields_=_fields_, _pack_=1, __module__=None, )) def _ctype_from_dtype(dtype): if dtype.fields is not None: return _ctype_from_dtype_structured(dtype) elif dtype.subdtype is not None: return _ctype_from_dtype_subarray(dtype) else: return _ctype_from_dtype_scalar(dtype) def as_ctypes_type(dtype): r""" Convert a dtype into a ctypes type. Parameters ---------- dtype : dtype The dtype to convert Returns ------- ctype A ctype scalar, union, array, or struct Raises ------ NotImplementedError If the conversion is not possible Notes ----- This function does not losslessly round-trip in either direction. ``np.dtype(as_ctypes_type(dt))`` will: - insert padding fields - reorder fields to be sorted by offset - discard field titles ``as_ctypes_type(np.dtype(ctype))`` will: - discard the class names of `ctypes.Structure`\ s and `ctypes.Union`\ s - convert single-element `ctypes.Union`\ s into single-element `ctypes.Structure`\ s - insert padding fields """ return _ctype_from_dtype(_dtype(dtype)) def as_array(obj, shape=None): """ Create a numpy array from a ctypes array or POINTER. The numpy array shares the memory with the ctypes object. The shape parameter must be given if converting from a ctypes POINTER. The shape parameter is ignored if converting from a ctypes array """ if isinstance(obj, ctypes._Pointer): # convert pointers to an array of the desired shape if shape is None: raise TypeError( 'as_array() requires a shape argument when called on a ' 'pointer') p_arr_type = ctypes.POINTER(_ctype_ndarray(obj._type_, shape)) obj = ctypes.cast(obj, p_arr_type).contents return asarray(obj) def as_ctypes(obj): """Create and return a ctypes object from a numpy array. Actually anything that exposes the __array_interface__ is accepted.""" ai = obj.__array_interface__ if ai["strides"]: raise TypeError("strided arrays not supported") if ai["version"] != 3: raise TypeError("only __array_interface__ version 3 supported") addr, readonly = ai["data"] if readonly: raise TypeError("readonly arrays unsupported") # can't use `_dtype((ai["typestr"], ai["shape"]))` here, as it overflows # dtype.itemsize (gh-14214) ctype_scalar = as_ctypes_type(ai["typestr"]) result_type = _ctype_ndarray(ctype_scalar, ai["shape"]) result = result_type.from_address(addr) result.__keep = obj return result
Upload File
Create Folder