X7ROOT File Manager
Current Path:
/opt/alt/ruby19/lib64/ruby/1.9.1
opt
/
alt
/
ruby19
/
lib64
/
ruby
/
1.9.1
/
??
..
??
English.rb
(5.59 KB)
??
abbrev.rb
(2.57 KB)
??
base64.rb
(2.63 KB)
??
benchmark.rb
(18 KB)
??
cgi
??
cgi.rb
(9.3 KB)
??
cmath.rb
(7.22 KB)
??
complex.rb
(380 B)
??
csv.rb
(82.66 KB)
??
date
??
date.rb
(946 B)
??
debug.rb
(23.23 KB)
??
delegate.rb
(9.74 KB)
??
digest
??
digest.rb
(2.24 KB)
??
dl
??
dl.rb
(176 B)
??
drb
??
drb.rb
(19 B)
??
e2mmap.rb
(3.8 KB)
??
erb.rb
(25.72 KB)
??
expect.rb
(1.33 KB)
??
fiddle
??
fiddle.rb
(928 B)
??
fileutils.rb
(45.32 KB)
??
find.rb
(2.03 KB)
??
forwardable.rb
(7.64 KB)
??
getoptlong.rb
(15.38 KB)
??
gserver.rb
(8.83 KB)
??
ipaddr.rb
(24.92 KB)
??
irb
??
irb.rb
(8.34 KB)
??
json
??
json.rb
(1.74 KB)
??
kconv.rb
(5.74 KB)
??
logger.rb
(20.85 KB)
??
mathn.rb
(6.52 KB)
??
matrix
??
matrix.rb
(47.65 KB)
??
mkmf.rb
(68.9 KB)
??
monitor.rb
(6.94 KB)
??
mutex_m.rb
(1.61 KB)
??
net
??
observer.rb
(5.69 KB)
??
open-uri.rb
(25.84 KB)
??
open3.rb
(20.64 KB)
??
openssl
??
openssl.rb
(547 B)
??
optparse
??
optparse.rb
(51.13 KB)
??
ostruct.rb
(6.49 KB)
??
pathname.rb
(14.21 KB)
??
pp.rb
(13.31 KB)
??
prettyprint.rb
(9.63 KB)
??
prime.rb
(13.98 KB)
??
profile.rb
(205 B)
??
profiler.rb
(1.59 KB)
??
pstore.rb
(15.81 KB)
??
psych
??
psych.rb
(9.82 KB)
??
racc
??
rake
??
rake.rb
(2.02 KB)
??
rational.rb
(308 B)
??
rbconfig
??
rdoc
??
rdoc.rb
(4.29 KB)
??
resolv-replace.rb
(1.74 KB)
??
resolv.rb
(59.91 KB)
??
rexml
??
rinda
??
ripper
??
ripper.rb
(91 B)
??
rss
??
rss.rb
(2.84 KB)
??
rubygems
??
rubygems.rb
(34.13 KB)
??
scanf.rb
(23.53 KB)
??
securerandom.rb
(8.46 KB)
??
set.rb
(29.91 KB)
??
shell
??
shell.rb
(5.9 KB)
??
shellwords.rb
(3.88 KB)
??
singleton.rb
(4.02 KB)
??
socket.rb
(23.22 KB)
??
syck
??
syck.rb
(13.91 KB)
??
sync.rb
(6.87 KB)
??
tempfile.rb
(10.42 KB)
??
test
??
thread.rb
(6.59 KB)
??
thwait.rb
(3.38 KB)
??
time.rb
(17.03 KB)
??
timeout.rb
(3.26 KB)
??
tmpdir.rb
(3.72 KB)
??
tracer.rb
(6.63 KB)
??
tsort.rb
(6.79 KB)
??
ubygems.rb
(268 B)
??
un.rb
(8.32 KB)
??
uri
??
uri.rb
(3.07 KB)
??
weakref.rb
(2.29 KB)
??
webrick
??
webrick.rb
(6.8 KB)
??
x86_64-linux
??
xmlrpc
??
yaml
??
yaml.rb
(2.58 KB)
Editing: matrix.rb
# encoding: utf-8 # # = matrix.rb # # An implementation of Matrix and Vector classes. # # See classes Matrix and Vector for documentation. # # Current Maintainer:: Marc-André Lafortune # Original Author:: Keiju ISHITSUKA # Original Documentation:: Gavin Sinclair (sourced from <i>Ruby in a Nutshell</i> (Matsumoto, O'Reilly)) ## require "e2mmap.rb" module ExceptionForMatrix # :nodoc: extend Exception2MessageMapper def_e2message(TypeError, "wrong argument type %s (expected %s)") def_e2message(ArgumentError, "Wrong # of arguments(%d for %d)") def_exception("ErrDimensionMismatch", "\#{self.name} dimension mismatch") def_exception("ErrNotRegular", "Not Regular Matrix") def_exception("ErrOperationNotDefined", "Operation(%s) can\\'t be defined: %s op %s") def_exception("ErrOperationNotImplemented", "Sorry, Operation(%s) not implemented: %s op %s") end # # The +Matrix+ class represents a mathematical matrix. It provides methods for creating # matrices, operating on them arithmetically and algebraically, # and determining their mathematical properties (trace, rank, inverse, determinant). # # == Method Catalogue # # To create a matrix: # * <tt> Matrix[*rows] </tt> # * <tt> Matrix.[](*rows) </tt> # * <tt> Matrix.rows(rows, copy = true) </tt> # * <tt> Matrix.columns(columns) </tt> # * <tt> Matrix.build(row_size, column_size, &block) </tt> # * <tt> Matrix.diagonal(*values) </tt> # * <tt> Matrix.scalar(n, value) </tt> # * <tt> Matrix.identity(n) </tt> # * <tt> Matrix.unit(n) </tt> # * <tt> Matrix.I(n) </tt> # * <tt> Matrix.zero(n) </tt> # * <tt> Matrix.row_vector(row) </tt> # * <tt> Matrix.column_vector(column) </tt> # # To access Matrix elements/columns/rows/submatrices/properties: # * <tt> [](i, j) </tt> # * <tt> #row_size </tt> # * <tt> #column_size </tt> # * <tt> #row(i) </tt> # * <tt> #column(j) </tt> # * <tt> #collect </tt> # * <tt> #map </tt> # * <tt> #each </tt> # * <tt> #each_with_index </tt> # * <tt> #find_index </tt> # * <tt> #minor(*param) </tt> # # Properties of a matrix: # * <tt> #diagonal? </tt> # * <tt> #empty? </tt> # * <tt> #hermitian? </tt> # * <tt> #lower_triangular? </tt> # * <tt> #normal? </tt> # * <tt> #orthogonal? </tt> # * <tt> #permutation? </tt> # * <tt> #real? </tt> # * <tt> #regular? </tt> # * <tt> #singular? </tt> # * <tt> #square? </tt> # * <tt> #symmetric? </tt> # * <tt> #unitary? </tt> # * <tt> #upper_triangular? </tt> # * <tt> #zero? </tt> # # Matrix arithmetic: # * <tt> *(m) </tt> # * <tt> +(m) </tt> # * <tt> -(m) </tt> # * <tt> #/(m) </tt> # * <tt> #inverse </tt> # * <tt> #inv </tt> # * <tt> ** </tt> # # Matrix functions: # * <tt> #determinant </tt> # * <tt> #det </tt> # * <tt> #rank </tt> # * <tt> #round </tt> # * <tt> #trace </tt> # * <tt> #tr </tt> # * <tt> #transpose </tt> # * <tt> #t </tt> # # Matrix decompositions: # * <tt> #eigen </tt> # * <tt> #eigensystem </tt> # * <tt> #lup </tt> # * <tt> #lup_decomposition </tt> # # Complex arithmetic: # * <tt> conj </tt> # * <tt> conjugate </tt> # * <tt> imag </tt> # * <tt> imaginary </tt> # * <tt> real </tt> # * <tt> rect </tt> # * <tt> rectangular </tt> # # Conversion to other data types: # * <tt> #coerce(other) </tt> # * <tt> #row_vectors </tt> # * <tt> #column_vectors </tt> # * <tt> #to_a </tt> # # String representations: # * <tt> #to_s </tt> # * <tt> #inspect </tt> # class Matrix include Enumerable include ExceptionForMatrix autoload :EigenvalueDecomposition, "matrix/eigenvalue_decomposition" autoload :LUPDecomposition, "matrix/lup_decomposition" # instance creations private_class_method :new attr_reader :rows protected :rows # # Creates a matrix where each argument is a row. # Matrix[ [25, 93], [-1, 66] ] # => 25 93 # -1 66 # def Matrix.[](*rows) Matrix.rows(rows, false) end # # Creates a matrix where +rows+ is an array of arrays, each of which is a row # of the matrix. If the optional argument +copy+ is false, use the given # arrays as the internal structure of the matrix without copying. # Matrix.rows([[25, 93], [-1, 66]]) # => 25 93 # -1 66 # def Matrix.rows(rows, copy = true) rows = convert_to_array(rows) rows.map! do |row| convert_to_array(row, copy) end size = (rows[0] || []).size rows.each do |row| Matrix.Raise ErrDimensionMismatch, "row size differs (#{row.size} should be #{size})" unless row.size == size end new rows, size end # # Creates a matrix using +columns+ as an array of column vectors. # Matrix.columns([[25, 93], [-1, 66]]) # => 25 -1 # 93 66 # def Matrix.columns(columns) Matrix.rows(columns, false).transpose end # # Creates a matrix of size +row_size+ x +column_size+. # It fills the values by calling the given block, # passing the current row and column. # Returns an enumerator if no block is given. # # m = Matrix.build(2, 4) {|row, col| col - row } # => Matrix[[0, 1, 2, 3], [-1, 0, 1, 2]] # m = Matrix.build(3) { rand } # => a 3x3 matrix with random elements # def Matrix.build(row_size, column_size = row_size) row_size = CoercionHelper.coerce_to_int(row_size) column_size = CoercionHelper.coerce_to_int(column_size) raise ArgumentError if row_size < 0 || column_size < 0 return to_enum :build, row_size, column_size unless block_given? rows = Array.new(row_size) do |i| Array.new(column_size) do |j| yield i, j end end new rows, column_size end # # Creates a matrix where the diagonal elements are composed of +values+. # Matrix.diagonal(9, 5, -3) # => 9 0 0 # 0 5 0 # 0 0 -3 # def Matrix.diagonal(*values) size = values.size rows = Array.new(size) {|j| row = Array.new(size, 0) row[j] = values[j] row } new rows end # # Creates an +n+ by +n+ diagonal matrix where each diagonal element is # +value+. # Matrix.scalar(2, 5) # => 5 0 # 0 5 # def Matrix.scalar(n, value) Matrix.diagonal(*Array.new(n, value)) end # # Creates an +n+ by +n+ identity matrix. # Matrix.identity(2) # => 1 0 # 0 1 # def Matrix.identity(n) Matrix.scalar(n, 1) end class << Matrix alias unit identity alias I identity end # # Creates a zero matrix. # Matrix.zero(2) # => 0 0 # 0 0 # def Matrix.zero(row_size, column_size = row_size) rows = Array.new(row_size){Array.new(column_size, 0)} new rows, column_size end # # Creates a single-row matrix where the values of that row are as given in # +row+. # Matrix.row_vector([4,5,6]) # => 4 5 6 # def Matrix.row_vector(row) row = convert_to_array(row) new [row] end # # Creates a single-column matrix where the values of that column are as given # in +column+. # Matrix.column_vector([4,5,6]) # => 4 # 5 # 6 # def Matrix.column_vector(column) column = convert_to_array(column) new [column].transpose, 1 end # # Creates a empty matrix of +row_size+ x +column_size+. # At least one of +row_size+ or +column_size+ must be 0. # # m = Matrix.empty(2, 0) # m == Matrix[ [], [] ] # => true # n = Matrix.empty(0, 3) # n == Matrix.columns([ [], [], [] ]) # => true # m * n # => Matrix[[0, 0, 0], [0, 0, 0]] # def Matrix.empty(row_size = 0, column_size = 0) Matrix.Raise ArgumentError, "One size must be 0" if column_size != 0 && row_size != 0 Matrix.Raise ArgumentError, "Negative size" if column_size < 0 || row_size < 0 new([[]]*row_size, column_size) end # # Matrix.new is private; use Matrix.rows, columns, [], etc... to create. # def initialize(rows, column_size = rows[0].size) # No checking is done at this point. rows must be an Array of Arrays. # column_size must be the size of the first row, if there is one, # otherwise it *must* be specified and can be any integer >= 0 @rows = rows @column_size = column_size end def new_matrix(rows, column_size = rows[0].size) # :nodoc: Matrix.send(:new, rows, column_size) # bypass privacy of Matrix.new end private :new_matrix # # Returns element (+i+,+j+) of the matrix. That is: row +i+, column +j+. # def [](i, j) @rows.fetch(i){return nil}[j] end alias element [] alias component [] def []=(i, j, v) @rows[i][j] = v end alias set_element []= alias set_component []= private :[]=, :set_element, :set_component # # Returns the number of rows. # def row_size @rows.size end # # Returns the number of columns. # attr_reader :column_size # # Returns row vector number +i+ of the matrix as a Vector (starting at 0 like # an array). When a block is given, the elements of that vector are iterated. # def row(i, &block) # :yield: e if block_given? @rows.fetch(i){return self}.each(&block) self else Vector.elements(@rows.fetch(i){return nil}) end end # # Returns column vector number +j+ of the matrix as a Vector (starting at 0 # like an array). When a block is given, the elements of that vector are # iterated. # def column(j) # :yield: e if block_given? return self if j >= column_size || j < -column_size row_size.times do |i| yield @rows[i][j] end self else return nil if j >= column_size || j < -column_size col = Array.new(row_size) {|i| @rows[i][j] } Vector.elements(col, false) end end # # Returns a matrix that is the result of iteration of the given block over all # elements of the matrix. # Matrix[ [1,2], [3,4] ].collect { |e| e**2 } # => 1 4 # 9 16 # def collect(&block) # :yield: e return to_enum(:collect) unless block_given? rows = @rows.collect{|row| row.collect(&block)} new_matrix rows, column_size end alias map collect # # Yields all elements of the matrix, starting with those of the first row, # or returns an Enumerator is no block given. # Elements can be restricted by passing an argument: # * :all (default): yields all elements # * :diagonal: yields only elements on the diagonal # * :off_diagonal: yields all elements except on the diagonal # * :lower: yields only elements on or below the diagonal # * :strict_lower: yields only elements below the diagonal # * :strict_upper: yields only elements above the diagonal # * :upper: yields only elements on or above the diagonal # # Matrix[ [1,2], [3,4] ].each { |e| puts e } # # => prints the numbers 1 to 4 # Matrix[ [1,2], [3,4] ].each(:strict_lower).to_a # => [3] # def each(which = :all) # :yield: e return to_enum :each, which unless block_given? last = column_size - 1 case which when :all block = Proc.new @rows.each do |row| row.each(&block) end when :diagonal @rows.each_with_index do |row, row_index| yield row.fetch(row_index){return self} end when :off_diagonal @rows.each_with_index do |row, row_index| column_size.times do |col_index| yield row[col_index] unless row_index == col_index end end when :lower @rows.each_with_index do |row, row_index| 0.upto([row_index, last].min) do |col_index| yield row[col_index] end end when :strict_lower @rows.each_with_index do |row, row_index| [row_index, column_size].min.times do |col_index| yield row[col_index] end end when :strict_upper @rows.each_with_index do |row, row_index| (row_index+1).upto(last) do |col_index| yield row[col_index] end end when :upper @rows.each_with_index do |row, row_index| row_index.upto(last) do |col_index| yield row[col_index] end end else Matrix.Raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper" end self end # # Same as #each, but the row index and column index in addition to the element # # Matrix[ [1,2], [3,4] ].each_with_index do |e, row, col| # puts "#{e} at #{row}, #{col}" # end # # => Prints: # # 1 at 0, 0 # # 2 at 0, 1 # # 3 at 1, 0 # # 4 at 1, 1 # def each_with_index(which = :all) # :yield: e, row, column return to_enum :each_with_index, which unless block_given? last = column_size - 1 case which when :all @rows.each_with_index do |row, row_index| row.each_with_index do |e, col_index| yield e, row_index, col_index end end when :diagonal @rows.each_with_index do |row, row_index| yield row.fetch(row_index){return self}, row_index, row_index end when :off_diagonal @rows.each_with_index do |row, row_index| column_size.times do |col_index| yield row[col_index], row_index, col_index unless row_index == col_index end end when :lower @rows.each_with_index do |row, row_index| 0.upto([row_index, last].min) do |col_index| yield row[col_index], row_index, col_index end end when :strict_lower @rows.each_with_index do |row, row_index| [row_index, column_size].min.times do |col_index| yield row[col_index], row_index, col_index end end when :strict_upper @rows.each_with_index do |row, row_index| (row_index+1).upto(last) do |col_index| yield row[col_index], row_index, col_index end end when :upper @rows.each_with_index do |row, row_index| row_index.upto(last) do |col_index| yield row[col_index], row_index, col_index end end else Matrix.Raise ArgumentError, "expected #{which.inspect} to be one of :all, :diagonal, :off_diagonal, :lower, :strict_lower, :strict_upper or :upper" end self end SELECTORS = {all: true, diagonal: true, off_diagonal: true, lower: true, strict_lower: true, strict_upper: true, upper: true}.freeze # # :call-seq: # index(value, selector = :all) -> [row, column] # index(selector = :all){ block } -> [row, column] # index(selector = :all) -> an_enumerator # # The index method is specialized to return the index as [row, column] # It also accepts an optional +selector+ argument, see #each for details. # # Matrix[ [1,2], [3,4] ].index(&:even?) # => [0, 1] # Matrix[ [1,1], [1,1] ].index(1, :strict_lower) # => [1, 0] # def index(*args) raise ArgumentError, "wrong number of arguments(#{args.size} for 0-2)" if args.size > 2 which = (args.size == 2 || SELECTORS.include?(args.last)) ? args.pop : :all return to_enum :find_index, which, *args unless block_given? || args.size == 1 if args.size == 1 value = args.first each_with_index(which) do |e, row_index, col_index| return row_index, col_index if e == value end else each_with_index(which) do |e, row_index, col_index| return row_index, col_index if yield e end end nil end alias_method :find_index, :index # # Returns a section of the matrix. The parameters are either: # * start_row, nrows, start_col, ncols; OR # * row_range, col_range # # Matrix.diagonal(9, 5, -3).minor(0..1, 0..2) # => 9 0 0 # 0 5 0 # # Like Array#[], negative indices count backward from the end of the # row or column (-1 is the last element). Returns nil if the starting # row or column is greater than row_size or column_size respectively. # def minor(*param) case param.size when 2 row_range, col_range = param from_row = row_range.first from_row += row_size if from_row < 0 to_row = row_range.end to_row += row_size if to_row < 0 to_row += 1 unless row_range.exclude_end? size_row = to_row - from_row from_col = col_range.first from_col += column_size if from_col < 0 to_col = col_range.end to_col += column_size if to_col < 0 to_col += 1 unless col_range.exclude_end? size_col = to_col - from_col when 4 from_row, size_row, from_col, size_col = param return nil if size_row < 0 || size_col < 0 from_row += row_size if from_row < 0 from_col += column_size if from_col < 0 else Matrix.Raise ArgumentError, param.inspect end return nil if from_row > row_size || from_col > column_size || from_row < 0 || from_col < 0 rows = @rows[from_row, size_row].collect{|row| row[from_col, size_col] } new_matrix rows, [column_size - from_col, size_col].min end #-- # TESTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Returns +true+ is this is a diagonal matrix. # Raises an error if matrix is not square. # def diagonal? Matrix.Raise ErrDimensionMismatch unless square? each(:off_diagonal).all?(&:zero?) end # # Returns +true+ if this is an empty matrix, i.e. if the number of rows # or the number of columns is 0. # def empty? column_size == 0 || row_size == 0 end # # Returns +true+ is this is an hermitian matrix. # Raises an error if matrix is not square. # def hermitian? Matrix.Raise ErrDimensionMismatch unless square? each_with_index(:strict_upper).all? do |e, row, col| e == rows[col][row].conj end end # # Returns +true+ is this is a lower triangular matrix. # def lower_triangular? each(:strict_upper).all?(&:zero?) end # # Returns +true+ is this is a normal matrix. # Raises an error if matrix is not square. # def normal? Matrix.Raise ErrDimensionMismatch unless square? rows.each_with_index do |row_i, i| rows.each_with_index do |row_j, j| s = 0 rows.each_with_index do |row_k, k| s += row_i[k] * row_j[k].conj - row_k[i].conj * row_k[j] end return false unless s == 0 end end true end # # Returns +true+ is this is an orthogonal matrix # Raises an error if matrix is not square. # def orthogonal? Matrix.Raise ErrDimensionMismatch unless square? rows.each_with_index do |row, i| column_size.times do |j| s = 0 row_size.times do |k| s += row[k] * rows[k][j] end return false unless s == (i == j ? 1 : 0) end end true end # # Returns +true+ is this is a permutation matrix # Raises an error if matrix is not square. # def permutation? Matrix.Raise ErrDimensionMismatch unless square? cols = Array.new(column_size) rows.each_with_index do |row, i| found = false row.each_with_index do |e, j| if e == 1 return false if found || cols[j] found = cols[j] = true elsif e != 0 return false end end return false unless found end true end # # Returns +true+ if all entries of the matrix are real. # def real? all?(&:real?) end # # Returns +true+ if this is a regular (i.e. non-singular) matrix. # def regular? not singular? end # # Returns +true+ is this is a singular matrix. # def singular? determinant == 0 end # # Returns +true+ is this is a square matrix. # def square? column_size == row_size end # # Returns +true+ is this is a symmetric matrix. # Raises an error if matrix is not square. # def symmetric? Matrix.Raise ErrDimensionMismatch unless square? each_with_index(:strict_upper).all? do |e, row, col| e == rows[col][row] end end # # Returns +true+ is this is a unitary matrix # Raises an error if matrix is not square. # def unitary? Matrix.Raise ErrDimensionMismatch unless square? rows.each_with_index do |row, i| column_size.times do |j| s = 0 row_size.times do |k| s += row[k].conj * rows[k][j] end return false unless s == (i == j ? 1 : 0) end end true end # # Returns +true+ is this is an upper triangular matrix. # def upper_triangular? each(:strict_lower).all?(&:zero?) end # # Returns +true+ is this is a matrix with only zero elements # def zero? all?(&:zero?) end #-- # OBJECT METHODS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Returns +true+ if and only if the two matrices contain equal elements. # def ==(other) return false unless Matrix === other && column_size == other.column_size # necessary for empty matrices rows == other.rows end def eql?(other) return false unless Matrix === other && column_size == other.column_size # necessary for empty matrices rows.eql? other.rows end # # Returns a clone of the matrix, so that the contents of each do not reference # identical objects. # There should be no good reason to do this since Matrices are immutable. # def clone new_matrix @rows.map(&:dup), column_size end # # Returns a hash-code for the matrix. # def hash @rows.hash end #-- # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Matrix multiplication. # Matrix[[2,4], [6,8]] * Matrix.identity(2) # => 2 4 # 6 8 # def *(m) # m is matrix or vector or number case(m) when Numeric rows = @rows.collect {|row| row.collect {|e| e * m } } return new_matrix rows, column_size when Vector m = Matrix.column_vector(m) r = self * m return r.column(0) when Matrix Matrix.Raise ErrDimensionMismatch if column_size != m.row_size rows = Array.new(row_size) {|i| Array.new(m.column_size) {|j| (0 ... column_size).inject(0) do |vij, k| vij + self[i, k] * m[k, j] end } } return new_matrix rows, m.column_size else return apply_through_coercion(m, __method__) end end # # Matrix addition. # Matrix.scalar(2,5) + Matrix[[1,0], [-4,7]] # => 6 0 # -4 12 # def +(m) case m when Numeric Matrix.Raise ErrOperationNotDefined, "+", self.class, m.class when Vector m = Matrix.column_vector(m) when Matrix else return apply_through_coercion(m, __method__) end Matrix.Raise ErrDimensionMismatch unless row_size == m.row_size and column_size == m.column_size rows = Array.new(row_size) {|i| Array.new(column_size) {|j| self[i, j] + m[i, j] } } new_matrix rows, column_size end # # Matrix subtraction. # Matrix[[1,5], [4,2]] - Matrix[[9,3], [-4,1]] # => -8 2 # 8 1 # def -(m) case m when Numeric Matrix.Raise ErrOperationNotDefined, "-", self.class, m.class when Vector m = Matrix.column_vector(m) when Matrix else return apply_through_coercion(m, __method__) end Matrix.Raise ErrDimensionMismatch unless row_size == m.row_size and column_size == m.column_size rows = Array.new(row_size) {|i| Array.new(column_size) {|j| self[i, j] - m[i, j] } } new_matrix rows, column_size end # # Matrix division (multiplication by the inverse). # Matrix[[7,6], [3,9]] / Matrix[[2,9], [3,1]] # => -7 1 # -3 -6 # def /(other) case other when Numeric rows = @rows.collect {|row| row.collect {|e| e / other } } return new_matrix rows, column_size when Matrix return self * other.inverse else return apply_through_coercion(other, __method__) end end # # Returns the inverse of the matrix. # Matrix[[-1, -1], [0, -1]].inverse # => -1 1 # 0 -1 # def inverse Matrix.Raise ErrDimensionMismatch unless square? Matrix.I(row_size).send(:inverse_from, self) end alias inv inverse def inverse_from(src) # :nodoc: last = row_size - 1 a = src.to_a 0.upto(last) do |k| i = k akk = a[k][k].abs (k+1).upto(last) do |j| v = a[j][k].abs if v > akk i = j akk = v end end Matrix.Raise ErrNotRegular if akk == 0 if i != k a[i], a[k] = a[k], a[i] @rows[i], @rows[k] = @rows[k], @rows[i] end akk = a[k][k] 0.upto(last) do |ii| next if ii == k q = a[ii][k].quo(akk) a[ii][k] = 0 (k + 1).upto(last) do |j| a[ii][j] -= a[k][j] * q end 0.upto(last) do |j| @rows[ii][j] -= @rows[k][j] * q end end (k+1).upto(last) do |j| a[k][j] = a[k][j].quo(akk) end 0.upto(last) do |j| @rows[k][j] = @rows[k][j].quo(akk) end end self end private :inverse_from # # Matrix exponentiation. # Equivalent to multiplying the matrix by itself N times. # Non integer exponents will be handled by diagonalizing the matrix. # # Matrix[[7,6], [3,9]] ** 2 # => 67 96 # 48 99 # def ** (other) case other when Integer x = self if other <= 0 x = self.inverse return Matrix.identity(self.column_size) if other == 0 other = -other end z = nil loop do z = z ? z * x : x if other[0] == 1 return z if (other >>= 1).zero? x *= x end when Numeric v, d, v_inv = eigensystem v * Matrix.diagonal(*d.each(:diagonal).map{|e| e ** other}) * v_inv else Matrix.Raise ErrOperationNotDefined, "**", self.class, other.class end end #-- # MATRIX FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Returns the determinant of the matrix. # # Beware that using Float values can yield erroneous results # because of their lack of precision. # Consider using exact types like Rational or BigDecimal instead. # # Matrix[[7,6], [3,9]].determinant # => 45 # def determinant Matrix.Raise ErrDimensionMismatch unless square? m = @rows case row_size # Up to 4x4, give result using Laplacian expansion by minors. # This will typically be faster, as well as giving good results # in case of Floats when 0 +1 when 1 + m[0][0] when 2 + m[0][0] * m[1][1] - m[0][1] * m[1][0] when 3 m0, m1, m2 = m + m0[0] * m1[1] * m2[2] - m0[0] * m1[2] * m2[1] \ - m0[1] * m1[0] * m2[2] + m0[1] * m1[2] * m2[0] \ + m0[2] * m1[0] * m2[1] - m0[2] * m1[1] * m2[0] when 4 m0, m1, m2, m3 = m + m0[0] * m1[1] * m2[2] * m3[3] - m0[0] * m1[1] * m2[3] * m3[2] \ - m0[0] * m1[2] * m2[1] * m3[3] + m0[0] * m1[2] * m2[3] * m3[1] \ + m0[0] * m1[3] * m2[1] * m3[2] - m0[0] * m1[3] * m2[2] * m3[1] \ - m0[1] * m1[0] * m2[2] * m3[3] + m0[1] * m1[0] * m2[3] * m3[2] \ + m0[1] * m1[2] * m2[0] * m3[3] - m0[1] * m1[2] * m2[3] * m3[0] \ - m0[1] * m1[3] * m2[0] * m3[2] + m0[1] * m1[3] * m2[2] * m3[0] \ + m0[2] * m1[0] * m2[1] * m3[3] - m0[2] * m1[0] * m2[3] * m3[1] \ - m0[2] * m1[1] * m2[0] * m3[3] + m0[2] * m1[1] * m2[3] * m3[0] \ + m0[2] * m1[3] * m2[0] * m3[1] - m0[2] * m1[3] * m2[1] * m3[0] \ - m0[3] * m1[0] * m2[1] * m3[2] + m0[3] * m1[0] * m2[2] * m3[1] \ + m0[3] * m1[1] * m2[0] * m3[2] - m0[3] * m1[1] * m2[2] * m3[0] \ - m0[3] * m1[2] * m2[0] * m3[1] + m0[3] * m1[2] * m2[1] * m3[0] else # For bigger matrices, use an efficient and general algorithm. # Currently, we use the Gauss-Bareiss algorithm determinant_bareiss end end alias_method :det, :determinant # # Private. Use Matrix#determinant # # Returns the determinant of the matrix, using # Bareiss' multistep integer-preserving gaussian elimination. # It has the same computational cost order O(n^3) as standard Gaussian elimination. # Intermediate results are fraction free and of lower complexity. # A matrix of Integers will have thus intermediate results that are also Integers, # with smaller bignums (if any), while a matrix of Float will usually have # intermediate results with better precision. # def determinant_bareiss size = row_size last = size - 1 a = to_a no_pivot = Proc.new{ return 0 } sign = +1 pivot = 1 size.times do |k| previous_pivot = pivot if (pivot = a[k][k]) == 0 switch = (k+1 ... size).find(no_pivot) {|row| a[row][k] != 0 } a[switch], a[k] = a[k], a[switch] pivot = a[k][k] sign = -sign end (k+1).upto(last) do |i| ai = a[i] (k+1).upto(last) do |j| ai[j] = (pivot * ai[j] - ai[k] * a[k][j]) / previous_pivot end end end sign * pivot end private :determinant_bareiss # # deprecated; use Matrix#determinant # def determinant_e warn "#{caller(1)[0]}: warning: Matrix#determinant_e is deprecated; use #determinant" rank end alias det_e determinant_e # # Returns the rank of the matrix. # Beware that using Float values can yield erroneous results # because of their lack of precision. # Consider using exact types like Rational or BigDecimal instead. # # Matrix[[7,6], [3,9]].rank # => 2 # def rank # We currently use Bareiss' multistep integer-preserving gaussian elimination # (see comments on determinant) a = to_a last_column = column_size - 1 last_row = row_size - 1 pivot_row = 0 previous_pivot = 1 0.upto(last_column) do |k| switch_row = (pivot_row .. last_row).find {|row| a[row][k] != 0 } if switch_row a[switch_row], a[pivot_row] = a[pivot_row], a[switch_row] unless pivot_row == switch_row pivot = a[pivot_row][k] (pivot_row+1).upto(last_row) do |i| ai = a[i] (k+1).upto(last_column) do |j| ai[j] = (pivot * ai[j] - ai[k] * a[pivot_row][j]) / previous_pivot end end pivot_row += 1 previous_pivot = pivot end end pivot_row end # # deprecated; use Matrix#rank # def rank_e warn "#{caller(1)[0]}: warning: Matrix#rank_e is deprecated; use #rank" rank end # Returns a matrix with entries rounded to the given precision # (see Float#round) # def round(ndigits=0) map{|e| e.round(ndigits)} end # # Returns the trace (sum of diagonal elements) of the matrix. # Matrix[[7,6], [3,9]].trace # => 16 # def trace Matrix.Raise ErrDimensionMismatch unless square? (0...column_size).inject(0) do |tr, i| tr + @rows[i][i] end end alias tr trace # # Returns the transpose of the matrix. # Matrix[[1,2], [3,4], [5,6]] # => 1 2 # 3 4 # 5 6 # Matrix[[1,2], [3,4], [5,6]].transpose # => 1 3 5 # 2 4 6 # def transpose return Matrix.empty(column_size, 0) if row_size.zero? new_matrix @rows.transpose, row_size end alias t transpose #-- # DECOMPOSITIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= #++ # # Returns the Eigensystem of the matrix; see +EigenvalueDecomposition+. # m = Matrix[[1, 2], [3, 4]] # v, d, v_inv = m.eigensystem # d.diagonal? # => true # v.inv == v_inv # => true # (v * d * v_inv).round(5) == m # => true # def eigensystem EigenvalueDecomposition.new(self) end alias eigen eigensystem # # Returns the LUP decomposition of the matrix; see +LUPDecomposition+. # a = Matrix[[1, 2], [3, 4]] # l, u, p = a.lup # l.lower_triangular? # => true # u.upper_triangular? # => true # p.permutation? # => true # l * u == a * p # => true # a.lup.solve([2, 5]) # => Vector[(1/1), (1/2)] # def lup LUPDecomposition.new(self) end alias lup_decomposition lup #-- # COMPLEX ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-= #++ # # Returns the conjugate of the matrix. # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]] # => 1+2i i 0 # 1 2 3 # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].conjugate # => 1-2i -i 0 # 1 2 3 # def conjugate collect(&:conjugate) end alias conj conjugate # # Returns the imaginary part of the matrix. # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]] # => 1+2i i 0 # 1 2 3 # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].imaginary # => 2i i 0 # 0 0 0 # def imaginary collect(&:imaginary) end alias imag imaginary # # Returns the real part of the matrix. # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]] # => 1+2i i 0 # 1 2 3 # Matrix[[Complex(1,2), Complex(0,1), 0], [1, 2, 3]].real # => 1 0 0 # 1 2 3 # def real collect(&:real) end # # Returns an array containing matrices corresponding to the real and imaginary # parts of the matrix # # m.rect == [m.real, m.imag] # ==> true for all matrices m # def rect [real, imag] end alias rectangular rect #-- # CONVERTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # The coerce method provides support for Ruby type coercion. # This coercion mechanism is used by Ruby to handle mixed-type # numeric operations: it is intended to find a compatible common # type between the two operands of the operator. # See also Numeric#coerce. # def coerce(other) case other when Numeric return Scalar.new(other), self else raise TypeError, "#{self.class} can't be coerced into #{other.class}" end end # # Returns an array of the row vectors of the matrix. See Vector. # def row_vectors Array.new(row_size) {|i| row(i) } end # # Returns an array of the column vectors of the matrix. See Vector. # def column_vectors Array.new(column_size) {|i| column(i) } end # # Returns an array of arrays that describe the rows of the matrix. # def to_a @rows.collect(&:dup) end def elements_to_f warn "#{caller(1)[0]}: warning: Matrix#elements_to_f is deprecated, use map(&:to_f)" map(&:to_f) end def elements_to_i warn "#{caller(1)[0]}: warning: Matrix#elements_to_i is deprecated, use map(&:to_i)" map(&:to_i) end def elements_to_r warn "#{caller(1)[0]}: warning: Matrix#elements_to_r is deprecated, use map(&:to_r)" map(&:to_r) end #-- # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Overrides Object#to_s # def to_s if empty? "Matrix.empty(#{row_size}, #{column_size})" else "Matrix[" + @rows.collect{|row| "[" + row.collect{|e| e.to_s}.join(", ") + "]" }.join(", ")+"]" end end # # Overrides Object#inspect # def inspect if empty? "Matrix.empty(#{row_size}, #{column_size})" else "Matrix#{@rows.inspect}" end end # Private helper modules module ConversionHelper # :nodoc: # # Converts the obj to an Array. If copy is set to true # a copy of obj will be made if necessary. # def convert_to_array(obj, copy = false) # :nodoc: case obj when Array copy ? obj.dup : obj when Vector obj.to_a else begin converted = obj.to_ary rescue Exception => e raise TypeError, "can't convert #{obj.class} into an Array (#{e.message})" end raise TypeError, "#{obj.class}#to_ary should return an Array" unless converted.is_a? Array converted end end private :convert_to_array end extend ConversionHelper module CoercionHelper # :nodoc: # # Applies the operator +oper+ with argument +obj+ # through coercion of +obj+ # def apply_through_coercion(obj, oper) coercion = obj.coerce(self) raise TypeError unless coercion.is_a?(Array) && coercion.length == 2 coercion[0].public_send(oper, coercion[1]) rescue raise TypeError, "#{obj.inspect} can't be coerced into #{self.class}" end private :apply_through_coercion # # Helper method to coerce a value into a specific class. # Raises a TypeError if the coercion fails or the returned value # is not of the right class. # (from Rubinius) # def self.coerce_to(obj, cls, meth) # :nodoc: return obj if obj.kind_of?(cls) begin ret = obj.__send__(meth) rescue Exception => e raise TypeError, "Coercion error: #{obj.inspect}.#{meth} => #{cls} failed:\n" \ "(#{e.message})" end raise TypeError, "Coercion error: obj.#{meth} did NOT return a #{cls} (was #{ret.class})" unless ret.kind_of? cls ret end def self.coerce_to_int(obj) coerce_to(obj, Integer, :to_int) end end include CoercionHelper # Private CLASS class Scalar < Numeric # :nodoc: include ExceptionForMatrix include CoercionHelper def initialize(value) @value = value end # ARITHMETIC def +(other) case other when Numeric Scalar.new(@value + other) when Vector, Matrix Scalar.Raise ErrOperationNotDefined, "+", @value.class, other.class else apply_through_coercion(other, __method__) end end def -(other) case other when Numeric Scalar.new(@value - other) when Vector, Matrix Scalar.Raise ErrOperationNotDefined, "-", @value.class, other.class else apply_through_coercion(other, __method__) end end def *(other) case other when Numeric Scalar.new(@value * other) when Vector, Matrix other.collect{|e| @value * e} else apply_through_coercion(other, __method__) end end def / (other) case other when Numeric Scalar.new(@value / other) when Vector Scalar.Raise ErrOperationNotDefined, "/", @value.class, other.class when Matrix self * other.inverse else apply_through_coercion(other, __method__) end end def ** (other) case other when Numeric Scalar.new(@value ** other) when Vector Scalar.Raise ErrOperationNotDefined, "**", @value.class, other.class when Matrix #other.powered_by(self) Scalar.Raise ErrOperationNotImplemented, "**", @value.class, other.class else apply_through_coercion(other, __method__) end end end end # # The +Vector+ class represents a mathematical vector, which is useful in its own right, and # also constitutes a row or column of a Matrix. # # == Method Catalogue # # To create a Vector: # * <tt> Vector.[](*array) </tt> # * <tt> Vector.elements(array, copy = true) </tt> # # To access elements: # * <tt> [](i) </tt> # # To enumerate the elements: # * <tt> #each2(v) </tt> # * <tt> #collect2(v) </tt> # # Vector arithmetic: # * <tt> *(x) "is matrix or number" </tt> # * <tt> +(v) </tt> # * <tt> -(v) </tt> # # Vector functions: # * <tt> #inner_product(v) </tt> # * <tt> #collect </tt> # * <tt> #magnitude </tt> # * <tt> #map </tt> # * <tt> #map2(v) </tt> # * <tt> #norm </tt> # * <tt> #normalize </tt> # * <tt> #r </tt> # * <tt> #size </tt> # # Conversion to other data types: # * <tt> #covector </tt> # * <tt> #to_a </tt> # * <tt> #coerce(other) </tt> # # String representations: # * <tt> #to_s </tt> # * <tt> #inspect </tt> # class Vector include ExceptionForMatrix include Enumerable include Matrix::CoercionHelper extend Matrix::ConversionHelper #INSTANCE CREATION private_class_method :new attr_reader :elements protected :elements # # Creates a Vector from a list of elements. # Vector[7, 4, ...] # def Vector.[](*array) new convert_to_array(array, false) end # # Creates a vector from an Array. The optional second argument specifies # whether the array itself or a copy is used internally. # def Vector.elements(array, copy = true) new convert_to_array(array, copy) end # # Vector.new is private; use Vector[] or Vector.elements to create. # def initialize(array) # No checking is done at this point. @elements = array end # ACCESSING # # Returns element number +i+ (starting at zero) of the vector. # def [](i) @elements[i] end alias element [] alias component [] def []=(i, v) @elements[i]= v end alias set_element []= alias set_component []= private :[]=, :set_element, :set_component # # Returns the number of elements in the vector. # def size @elements.size end #-- # ENUMERATIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Iterate over the elements of this vector # def each(&block) return to_enum(:each) unless block_given? @elements.each(&block) self end # # Iterate over the elements of this vector and +v+ in conjunction. # def each2(v) # :yield: e1, e2 raise TypeError, "Integer is not like Vector" if v.kind_of?(Integer) Vector.Raise ErrDimensionMismatch if size != v.size return to_enum(:each2, v) unless block_given? size.times do |i| yield @elements[i], v[i] end self end # # Collects (as in Enumerable#collect) over the elements of this vector and +v+ # in conjunction. # def collect2(v) # :yield: e1, e2 raise TypeError, "Integer is not like Vector" if v.kind_of?(Integer) Vector.Raise ErrDimensionMismatch if size != v.size return to_enum(:collect2, v) unless block_given? Array.new(size) do |i| yield @elements[i], v[i] end end #-- # COMPARING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Returns +true+ iff the two vectors have the same elements in the same order. # def ==(other) return false unless Vector === other @elements == other.elements end def eql?(other) return false unless Vector === other @elements.eql? other.elements end # # Return a copy of the vector. # def clone Vector.elements(@elements) end # # Return a hash-code for the vector. # def hash @elements.hash end #-- # ARITHMETIC -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Multiplies the vector by +x+, where +x+ is a number or another vector. # def *(x) case x when Numeric els = @elements.collect{|e| e * x} Vector.elements(els, false) when Matrix Matrix.column_vector(self) * x when Vector Vector.Raise ErrOperationNotDefined, "*", self.class, x.class else apply_through_coercion(x, __method__) end end # # Vector addition. # def +(v) case v when Vector Vector.Raise ErrDimensionMismatch if size != v.size els = collect2(v) {|v1, v2| v1 + v2 } Vector.elements(els, false) when Matrix Matrix.column_vector(self) + v else apply_through_coercion(v, __method__) end end # # Vector subtraction. # def -(v) case v when Vector Vector.Raise ErrDimensionMismatch if size != v.size els = collect2(v) {|v1, v2| v1 - v2 } Vector.elements(els, false) when Matrix Matrix.column_vector(self) - v else apply_through_coercion(v, __method__) end end # # Vector division. # def /(x) case x when Numeric els = @elements.collect{|e| e / x} Vector.elements(els, false) when Matrix, Vector Vector.Raise ErrOperationNotDefined, "/", self.class, x.class else apply_through_coercion(x, __method__) end end #-- # VECTOR FUNCTIONS -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Returns the inner product of this vector with the other. # Vector[4,7].inner_product Vector[10,1] => 47 # def inner_product(v) Vector.Raise ErrDimensionMismatch if size != v.size p = 0 each2(v) {|v1, v2| p += v1 * v2 } p end # # Like Array#collect. # def collect(&block) # :yield: e return to_enum(:collect) unless block_given? els = @elements.collect(&block) Vector.elements(els, false) end alias map collect # # Returns the modulus (Pythagorean distance) of the vector. # Vector[5,8,2].r => 9.643650761 # def magnitude Math.sqrt(@elements.inject(0) {|v, e| v + e*e}) end alias r magnitude alias norm magnitude # # Like Vector#collect2, but returns a Vector instead of an Array. # def map2(v, &block) # :yield: e1, e2 return to_enum(:map2, v) unless block_given? els = collect2(v, &block) Vector.elements(els, false) end class ZeroVectorError < StandardError end # # Returns a new vector with the same direction but with norm 1. # v = Vector[5,8,2].normalize # # => Vector[0.5184758473652127, 0.8295613557843402, 0.20739033894608505] # v.norm => 1.0 # def normalize n = magnitude raise ZeroVectorError, "Zero vectors can not be normalized" if n == 0 self / n end #-- # CONVERTING #++ # # Creates a single-row matrix from this vector. # def covector Matrix.row_vector(self) end # # Returns the elements of the vector in an array. # def to_a @elements.dup end def elements_to_f warn "#{caller(1)[0]}: warning: Vector#elements_to_f is deprecated" map(&:to_f) end def elements_to_i warn "#{caller(1)[0]}: warning: Vector#elements_to_i is deprecated" map(&:to_i) end def elements_to_r warn "#{caller(1)[0]}: warning: Vector#elements_to_r is deprecated" map(&:to_r) end # # The coerce method provides support for Ruby type coercion. # This coercion mechanism is used by Ruby to handle mixed-type # numeric operations: it is intended to find a compatible common # type between the two operands of the operator. # See also Numeric#coerce. # def coerce(other) case other when Numeric return Matrix::Scalar.new(other), self else raise TypeError, "#{self.class} can't be coerced into #{other.class}" end end #-- # PRINTING -=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=-=- #++ # # Overrides Object#to_s # def to_s "Vector[" + @elements.join(", ") + "]" end # # Overrides Object#inspect # def inspect "Vector" + @elements.inspect end end
Upload File
Create Folder