X7ROOT File Manager
Current Path:
/opt/cloudlinux/venv/lib/python3.11/site-packages/numpy/lib
opt
/
cloudlinux
/
venv
/
lib
/
python3.11
/
site-packages
/
numpy
/
lib
/
??
..
??
__init__.py
(2.7 KB)
??
__init__.pyi
(5.46 KB)
??
__pycache__
??
_datasource.py
(22.1 KB)
??
_iotools.py
(30.14 KB)
??
_version.py
(4.74 KB)
??
_version.pyi
(633 B)
??
arraypad.py
(31.06 KB)
??
arraypad.pyi
(1.69 KB)
??
arraysetops.py
(32.87 KB)
??
arraysetops.pyi
(8.14 KB)
??
arrayterator.py
(6.9 KB)
??
arrayterator.pyi
(1.5 KB)
??
format.py
(33.95 KB)
??
format.pyi
(748 B)
??
function_base.py
(184.67 KB)
??
function_base.pyi
(16.2 KB)
??
histograms.py
(36.81 KB)
??
histograms.pyi
(995 B)
??
index_tricks.py
(30.61 KB)
??
index_tricks.pyi
(4.15 KB)
??
mixins.py
(6.91 KB)
??
mixins.pyi
(3.04 KB)
??
nanfunctions.py
(64.23 KB)
??
nanfunctions.pyi
(606 B)
??
npyio.py
(95.04 KB)
??
npyio.pyi
(9.5 KB)
??
polynomial.py
(43.1 KB)
??
polynomial.pyi
(6.79 KB)
??
recfunctions.py
(58.03 KB)
??
scimath.py
(14.68 KB)
??
scimath.pyi
(2.82 KB)
??
setup.py
(405 B)
??
shape_base.py
(38.03 KB)
??
shape_base.pyi
(5.06 KB)
??
stride_tricks.py
(17.49 KB)
??
stride_tricks.pyi
(1.71 KB)
??
tests
??
twodim_base.py
(32.17 KB)
??
twodim_base.pyi
(5.24 KB)
??
type_check.py
(19.49 KB)
??
type_check.pyi
(5.44 KB)
??
ufunclike.py
(6.18 KB)
??
ufunclike.pyi
(1.26 KB)
??
user_array.py
(7.54 KB)
??
utils.py
(36.92 KB)
??
utils.pyi
(2.3 KB)
Editing: twodim_base.pyi
from collections.abc import Callable, Sequence from typing import ( Any, overload, TypeVar, Union, ) from numpy import ( generic, number, bool_, timedelta64, datetime64, int_, intp, float64, signedinteger, floating, complexfloating, object_, _OrderCF, ) from numpy._typing import ( DTypeLike, _DTypeLike, ArrayLike, _ArrayLike, NDArray, _SupportsArrayFunc, _ArrayLikeInt_co, _ArrayLikeFloat_co, _ArrayLikeComplex_co, _ArrayLikeObject_co, ) _T = TypeVar("_T") _SCT = TypeVar("_SCT", bound=generic) # The returned arrays dtype must be compatible with `np.equal` _MaskFunc = Callable[ [NDArray[int_], _T], NDArray[Union[number[Any], bool_, timedelta64, datetime64, object_]], ] __all__: list[str] @overload def fliplr(m: _ArrayLike[_SCT]) -> NDArray[_SCT]: ... @overload def fliplr(m: ArrayLike) -> NDArray[Any]: ... @overload def flipud(m: _ArrayLike[_SCT]) -> NDArray[_SCT]: ... @overload def flipud(m: ArrayLike) -> NDArray[Any]: ... @overload def eye( N: int, M: None | int = ..., k: int = ..., dtype: None = ..., order: _OrderCF = ..., *, like: None | _SupportsArrayFunc = ..., ) -> NDArray[float64]: ... @overload def eye( N: int, M: None | int = ..., k: int = ..., dtype: _DTypeLike[_SCT] = ..., order: _OrderCF = ..., *, like: None | _SupportsArrayFunc = ..., ) -> NDArray[_SCT]: ... @overload def eye( N: int, M: None | int = ..., k: int = ..., dtype: DTypeLike = ..., order: _OrderCF = ..., *, like: None | _SupportsArrayFunc = ..., ) -> NDArray[Any]: ... @overload def diag(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ... @overload def diag(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... @overload def diagflat(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ... @overload def diagflat(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... @overload def tri( N: int, M: None | int = ..., k: int = ..., dtype: None = ..., *, like: None | _SupportsArrayFunc = ... ) -> NDArray[float64]: ... @overload def tri( N: int, M: None | int = ..., k: int = ..., dtype: _DTypeLike[_SCT] = ..., *, like: None | _SupportsArrayFunc = ... ) -> NDArray[_SCT]: ... @overload def tri( N: int, M: None | int = ..., k: int = ..., dtype: DTypeLike = ..., *, like: None | _SupportsArrayFunc = ... ) -> NDArray[Any]: ... @overload def tril(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ... @overload def tril(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... @overload def triu(v: _ArrayLike[_SCT], k: int = ...) -> NDArray[_SCT]: ... @overload def triu(v: ArrayLike, k: int = ...) -> NDArray[Any]: ... @overload def vander( # type: ignore[misc] x: _ArrayLikeInt_co, N: None | int = ..., increasing: bool = ..., ) -> NDArray[signedinteger[Any]]: ... @overload def vander( # type: ignore[misc] x: _ArrayLikeFloat_co, N: None | int = ..., increasing: bool = ..., ) -> NDArray[floating[Any]]: ... @overload def vander( x: _ArrayLikeComplex_co, N: None | int = ..., increasing: bool = ..., ) -> NDArray[complexfloating[Any, Any]]: ... @overload def vander( x: _ArrayLikeObject_co, N: None | int = ..., increasing: bool = ..., ) -> NDArray[object_]: ... @overload def histogram2d( # type: ignore[misc] x: _ArrayLikeFloat_co, y: _ArrayLikeFloat_co, bins: int | Sequence[int] = ..., range: None | _ArrayLikeFloat_co = ..., density: None | bool = ..., weights: None | _ArrayLikeFloat_co = ..., ) -> tuple[ NDArray[float64], NDArray[floating[Any]], NDArray[floating[Any]], ]: ... @overload def histogram2d( x: _ArrayLikeComplex_co, y: _ArrayLikeComplex_co, bins: int | Sequence[int] = ..., range: None | _ArrayLikeFloat_co = ..., density: None | bool = ..., weights: None | _ArrayLikeFloat_co = ..., ) -> tuple[ NDArray[float64], NDArray[complexfloating[Any, Any]], NDArray[complexfloating[Any, Any]], ]: ... @overload # TODO: Sort out `bins` def histogram2d( x: _ArrayLikeComplex_co, y: _ArrayLikeComplex_co, bins: Sequence[_ArrayLikeInt_co], range: None | _ArrayLikeFloat_co = ..., density: None | bool = ..., weights: None | _ArrayLikeFloat_co = ..., ) -> tuple[ NDArray[float64], NDArray[Any], NDArray[Any], ]: ... # NOTE: we're assuming/demanding here the `mask_func` returns # an ndarray of shape `(n, n)`; otherwise there is the possibility # of the output tuple having more or less than 2 elements @overload def mask_indices( n: int, mask_func: _MaskFunc[int], k: int = ..., ) -> tuple[NDArray[intp], NDArray[intp]]: ... @overload def mask_indices( n: int, mask_func: _MaskFunc[_T], k: _T, ) -> tuple[NDArray[intp], NDArray[intp]]: ... def tril_indices( n: int, k: int = ..., m: None | int = ..., ) -> tuple[NDArray[int_], NDArray[int_]]: ... def tril_indices_from( arr: NDArray[Any], k: int = ..., ) -> tuple[NDArray[int_], NDArray[int_]]: ... def triu_indices( n: int, k: int = ..., m: None | int = ..., ) -> tuple[NDArray[int_], NDArray[int_]]: ... def triu_indices_from( arr: NDArray[Any], k: int = ..., ) -> tuple[NDArray[int_], NDArray[int_]]: ...
Upload File
Create Folder